
New features of Latches and Mutexes in
Oracle 12c.

Andrey Nikolaev
Oracle Database Performance Expert

RDTEX
Russia

09 December 2015

Andrey Nikolaev RDTEX

Who am I
Andrey.Nikolaev@rdtex.ru
RDTEX, First Line Support Centre.
http://andreynikolaev.wordpress.com
”Latch, Mutex and Beyond”
Specialist in Oracle performance tuning.
Over 25 years of Oracle-related experience as a
research scientist, developer, DBA, performance
consultant, and lecturer . . .
In late 80s took part in the first applications of Oracle databases in
Particle Physics.
Occasionally present at conferences.

A member of Russian OUG:

Background in physics and mathematics and member of the
American Mathematical Society (AMS).

Andrey Nikolaev RDTEX

http://andreynikolaev.wordpress.com

The Goal of this Presentation

Latch and mutex contention is still one of the most complex DBA
challenges.
I discussed the internals of Oracle 8i-11g latches and mutexes at
UKOUG2011 and Hotsos2012. My research have found that:

Exclusive latches spin for 20,000 cycles.
The exponential backoff disappeared in Oracle 9.2.
The latch free wait may be infinite.
Mutexes have a variety of spin-and-wait schemes.

Now, I will compare the Oracle 12c latches and mutexes to show
that:

The mutexes are not a replacement for the latches. They operate at
different timescales and have different purposes.
There are ways to monitor and tune Oracle latches and mutexes.
Sometimes it is worthwhile to adjust the spin count.

Andrey Nikolaev RDTEX

Episode of a Latch Contention
Oracle instance hanging caused by heavy cache buffers chains
latch contention:

Andrey Nikolaev RDTEX

Episode of a Mutex Contention

Incidents of cursor: mutex S contention caused by high version
counts of frequently executed SQL operators:

Andrey Nikolaev RDTEX

Disclaimer

Production use of the undocumented techniques described
here should always be approved by Oracle Support.

Oracle technologies evolve rapidly. This presentation
discusses the latches and mutexes

as of Oracle 12.1.0.2.

Andrey Nikolaev RDTEX

Additional Info about Oracle Latches and Mutexes

”Oracle8i Internal Services for Waits, Latches, Locks, and
Memory” by Steve Adams, 1999.

Founded new era of Oracle performance tuning.
”Systematic Latch Contention Troubleshooting” approach by
Tanel Poder, 2010.

Latchprofx.sql script revolutionised the latch tuning.
”Oracle Core: Essential Internals for DBAs and Developers”
by Jonathan Lewis, 2011.
My blog ”Latch, Mutex and Beyond”
http://andreynikolaev.wordpress.com.

Andrey Nikolaev RDTEX

http://andreynikolaev.wordpress.com

Serialization mechanisms in Oracle

Oracle Database Concepts 12c:
”A latch is a simple, low-level serialization mechanism that

coordinates multiuser access to shared data structures, objects, and
files.”
”A mutual exclusion object (mutex) is a low-level mechanism that
prevents an object in memory from aging out or from being
corrupted . . . ”
”Internal locks are higher-level, more complex mechanisms . . . ”

Locks: Latches: Mutexes:
Access Several Modes Types and Modes Operations
Acquisition FIFO SIRO (spin) + FIFO SIRO (spin)
Atomic No Yes Yes
Timescale Milliseconds Microseconds SubMicroseconds
Lifecycle Dynamic Static Dynamic

Andrey Nikolaev RDTEX

Classic Spinlocks

Oracle latches and mutexes are spinlocks.
According to Wikipedia: ”Spinlock waits in a loop repeatedly
checking until the lock becomes available . . . ”. Spinlocks use atomic
instructions.
Spinlocks were first introduced by Edsger Dijkstra in 1965, and there
use has since been thoroughly researched.
Many sophisticated spinlock realizations have been proposed and
evaluated including the TS, TTS, MCS, Anderson, and more.
There are two general types of spinlocks:

System spinlocks. Kernel OS threads cannot sleep and must spin until
success.
Metrics: Atomic operations frequency and shared bus utilisation.
User spinlocks. Average holding time of Oracle latches and mutexes is
about 1 us. It is more efficient to poll a lock rather than preempt the
thread doing 1 ms context switch.
Metrics: CPU and elapsed times.

Andrey Nikolaev RDTEX

How the Spinlock Works

The spinlock location:
Free Holding by CPU1 Holding by CPU2 Free

CPU1: Holding the spinlock

CPU2: Spin Holding the spinlock

CPU3: Spin Sleep releases the CPU

∆

Oracle latches and mutexes:
Use atomic hardware instruction for the immediate get.
If missed, the process repeatedly polls the spinlock location during spin.
The number of spin cycles is limited by spin count.
If spin get does not succeed, the process sleeps.

Oracle counts the gets and sleeps and we can measure Utilisation.

Andrey Nikolaev RDTEX

Spinlock Realizations

Pseudocode: Problems:
TS. pre-11.2
mutex

while(Test and Set(lock)); Shared bus satura-
tion

TTS.
Oracle latch,
11.2 mutex

while(lock‖Test and Set(lock)); Invalidation
storms on release
(”open door”).

Anderson,
MCS, etc.

Queues. Widely used in Java,
Linux kernel . . .

CPU and memory
overhead, preemp-
tion issues

Andrey Nikolaev RDTEX

Tools

Andrey Nikolaev RDTEX

Oradebug: Internal Oracle Debugger

Oradebug call. Allows us to invoke any internal Oracle function
manually.
SQL> oradebug call kslgetl 0x5001A020 1 2 3
Function returned 1

Oradebug peek. Examines contents of any memory location.
SQL> oradebug peek 200222A0 24
[200222A0, 200222B8) = 00000016 00000001 000001D0 00000007

Oradebug poke. Modified memory. No longer works in 12c.
Oradebug watch. Sets a watchpoint on a region of memory.
Oradebug event wait event[”latch free”] trace(”%s\n”,shortstack())

Andrey Nikolaev RDTEX

DTrace: Solaris Dynamic Tracing Framework

DTrace made possible to investigate how the spinlocks perform. It
allowed me:

Create triggers on any event or function call in Oracle and Solaris.
provider:module:function:name
pid1910:oracle:kslgetl:entry
pid1910:oracle:kgxExclusive:entry

Write trigger bodies - actions. DTrace can read and change any
memory location.
Count the spinlock spins, trace waits, perform experiments.
Measure times and distributions up to microsecond precision.

Andrey Nikolaev RDTEX

Latch Contention Testcases

My investigation is based on testcases.
A contention for a shared cache buffer chains latch occurs when
sessions scan concurrently a block with multiple versions:

create table latch_contention as select rownum id from dba_objects
where rownum<100; ...
update latch_contention set id=id+100 where id=<thread number>;
@sample 1 latch_contention 1=1 1000000 ...

Frequent concurrent hash joins cause a contention for exclusive row
cache objects latches (bug 13902396):

for i in 1..1000000 loop
select /*+ use_hash(a) */ 1 into j from dual a natural join dual;

end loop;

Many other contention scenarios are possible.
Andrey Nikolaev RDTEX

Mutex Contention Testcases

Cursor: pin S mutex contention arises when the same SQL
operator is executed concurrently at high frequency.

for i in 1..1000000 loop
execute immediate ’select 1 from dual where 1=2’;

end loop;

Cursor: mutex S waits appear after the addition of several versions
of the SQL and setting session cached cursors=0.
Library cache: mutex X contention arises when anonymous
PL/SQL block is executed concurrently at high frequency.

for i in 1..1000000 loop
execute immediate ’begin demo_proc();end;’;

end loop;

Many other mutex contention scenarios are possible.
Andrey Nikolaev RDTEX

Row Cache Latch Contention Testcase

Latch wait

Elapsed time

CPU time

Elapsed time and CPU time vs. number of threads.
Oracle Database Appliance (24 SMT).

Andrey Nikolaev RDTEX

How Oracle
processes and sessions

hold latches and mutexes

Andrey Nikolaev RDTEX

Latches in State Objects Dumps

Note 423153.1. Reading and Understanding Systemstate Dumps.
Example: A process with the PID=46 is waiting for a latch:

PROCESS 46:
... (latch info) hold_bits=0x0

Waiting For:
0x6000aeb0 ’test excl. non-parent lmax’ (level=8)

... Waiter Location: ksfq2.h LINE:607 ID:ksfqpaa:
Waiter Context: 100...

... Current Wait Stack:
0: waiting for ’latch free’

address=0x6000aeb0, number=0x8, tries=0x0 ...

Another Oracle process with the PID=7 is holding the latch:
... (latch info) hold_bits=0x100

Holding:
0x6000aeb0 ’test excl. non-parent lmax’ (level=8)
Holder Location: ksfq2.h LINE:607 ID:ksfqpaa:
Holder Context: 100 ...

Andrey Nikolaev RDTEX

Latches Held by the Processes

struct ksupr{ . . .
struct kslla{

ksllt *ksllalat[14];
. . . }}

struct ksupr{. . . }
. . .

v$process (x$ksupr)
fixed array:

. . .
struct ksupr{. . . }

struct ksllt{ . . . }

latch#1

struct ksllt{ . . . }

latch#2

struct ksllt{ . . . }

latch#3

Each process has an array of references to the latches it is holding.
This kslla structure is embedded into the process state object.

Andrey Nikolaev RDTEX

KGX Mutexes in State Object dumps

Note 423153.1. Reading and Understanding Systemstate Dumps.
Example: An Oracle session with the SID=22 is holding a
Cursor: pin mutex in E mode during a SHRD EXAM operation:

KGX Atomic Operation Log 3ea866010
Mutex 3f119b5a8(22, 1) idn 382da701 oper SHRD_EXAM
Cursor Pin uid 22 efd 0 whr 5 slp 0 ...

The mutex identifier (idn) is the hash value of the current SQL.
Below, another session with SID=24 is waiting for the mutex during
the GET SHRD operation:
... waiting for ’cursor: pin S’

idn=0x382da701, value=0x1600000001, where=0x500000000
... KGX Atomic Operation Log 3ea8d8c08

Mutex 3f119b5a8(22, 1) idn 382da701 oper GET_SHRD
Cursor Pin uid 24 efd 0 whr 5 slp 46685 ...

Andrey Nikolaev RDTEX

Mutexes Held by the Sessions

struct ksuse{. . . }
(session) sid : . . .
KKS-UOL used: . . .
KGL-UOL SO Cache:
. . .

struct ksuse{. . . }
. . .

v$session (x$ksuse)
fixed array:

. . .
struct ksuse{. . . }

mutex addr
oper GET EXCL
. . .

AOL#1

mutex addr
oper GET SHRD
. . .

AOL#2

mutex addr
oper GET EXCL
. . .

AOL#3

mutex
oper SHRD

object#1

mutex
oper EXCL

object#2

mutex
oper EXCL

object#3

Each session has an array of references to the Atomic Operation
Logs (AOL’s) that it is using.
The mutexes themselves are embedded into the KGL objects.

Andrey Nikolaev RDTEX

Atomic Operation Log (AOL) Structure
The session changes the mutex state using an AOL:
KGX Atomic Operation Log 3ea866010

Mutex 3f119b5a8(22, 1) idn 382da701 oper SHRD_EXAM
Cursor Pin uid 22 efd 0 whr 5 slp 0 ...

The AOL contains information about a mutex operation in progress.
In order to change the mutex state, the session should:

Allocate the AOL structure.
Fill the AOL with the data about the mutex and the desired operation.
Execute a mutex acquisition routine.

SQL> oradebug peek 0x3EA866010 12
[3EA866010, 3EA86601C) = 3F119B5A8 00050703 00000016 ...

Mutex whr op uid(sid)

AOL’s in systemstate dump show all mutex operations in progress.
In case of a session failure AOL’s are used by the PMON during a
recovery.

Andrey Nikolaev RDTEX

State diagrams,
instrumentations,

and interface routines

Andrey Nikolaev RDTEX

DTrace Reveals Latch Interface Routines
Oracle calls the following functions to acquire the exclusive latch:

kslgetl(laddr, wait, why, where) – get the exclusive latch.
kslg2c(l1,l2,trc,why, where) – get two exclusive child

latches.
kslgpl(laddr,comment,why,where) – get the parent and all chil-

dren.
kslfre(laddr) – free the latch.

Oracle allows us to do the same using the oradebug call.

Exclusive latch state diagram: N X
kslgetl()
kslfre()

In Oracle 12c, the first word of the busy latch contains the PID of
the holder process:
SQL> oradebug peek 200222A0 24
[200222A0, 200222B8) = 00000016 00000001 000001D0 00000007

pidˆ gets latch# level#

Andrey Nikolaev RDTEX

Where and Why Oracle Gets the Latch
To request the latch, the Oracle kernel routine needs:

laddres – address of the latch in the SGA.
wait – flag for no-wait (0) or wait (1) latch acquisition.
where - code for the location from where the latch is being acquired.
Oracle enlists possible where values for the latch in the x$ksllw
fixed table.
why - context to explain why the latch is being acquired at this
where. It contains the DBA address for the CBC latches (Tanel
Poder), the SGA chunk address for the shared pool latch, session
address, etc.
The latch gets are instrumented by the where values in the v$latch,
v$latchholder, v$process, and v$latch misses fixed views.
Tanel Poder introduced the high-frequency sampling of the why
values from v$latchholder to systematically troubleshoot the latch
contention.

Andrey Nikolaev RDTEX

Shared Latches

Shared latches are Oracle’s realization of the ”Read-Write”
spinlocks.
The S and X modes of the shared latch are incompatible.
kslgetsl w(laddr,wait,why,where,mode) – get the shared latch.

8 – Shared mode, 16 – eXclusive mode
Internally, however, Oracle uses the ksl get shared latch()
function with six arguments.
In S mode, the latch memory location represents the number of
processes that are holding the latch simultaneously. For example:
SQL> oradebug peek 0x6000AEA8 24
[6000AEA8, 6000AEC0) = 00000002 00000000 00000001 00000007

ˆNproc ˆX flag gets latch#

The cache buffers chains shared latches are also acquired and
released within the KCB Oracle functions. Probably, corresponding
routines are encoded as C macros.

Andrey Nikolaev RDTEX

Shared Latches in eXclusive Mode

If the latch is being held in S mode, the X mode waiter will block all
further requests.
This Blocking is achieved by a special 0x40000000 bit in the latch
value. This bit is an indication that some incompatible latch
operation is in progress. Only the latch releases are possible.

None S1 S2 S3

X B1 B2 B3

kslfre
mode 8

m
ode

16ks
lfr

e

m
od

e
16

. . .

. . .

Upon release of the latch, the queued processes will be woken up
one by one.
The X mode latch gets effectively serialise the shared latch.

Andrey Nikolaev RDTEX

Latch Types by Oracle Version

Oracle Number of latches PAR G2C LNG UFS SHARED
7.3.4.0 53 14 2 3 - -
8.0.6.3 80 21 7 3 - 3
8.1.7.4 152 48 19 4 - 9
9.2.0.8 242 79 37 - - 19
10.2.0.4 394 117 59 - 4 50
11.1.0.7 502 145 67 - 6 83
11.2.0.3 553 154 72 - 6 93
12.1.0.2 770 241 120 - 8 164

Oracle added new latches in every version.

Andrey Nikolaev RDTEX

Mutex Interface Routines

Oradebug watch allows for catching Oracle functions that modify
mutex.
DTrace reveals the flow of and arguments of functions.
Oracle uses the following KGX functions for changing the mutex
state:

kgxExclusive (.,mutex, AOL) -get the mutex in X mode.
kgxShared(.,mutex, AOL) -get the mutex in Shared mode.
kgxSharedExamine(. . .)
kgxRelease(.,AOL) -release the mutex.
kgxExclusive2Shared (. . .) -downgrade X mode to S.
kgxIncrement(. . .) -increment S mode counter.
kgxDecrement(. . .) -decrement S mode counter.
. . .

Some non-KGX functions, such as kksLockDelete() also modify
mutexes.

Andrey Nikolaev RDTEX

Mutex Structure in Memory

Oracle does not externalise the mutex structure to the SQL:
SQL> oradebug peek 0x3F119B5A8 24
[3F119B5A8, 3F119B5CC) =

00000016 00000001 0000001D 000015D7 382DA701 03000000 ...
SID refcnt gets sleeps idn op

The mutex structure contains:
An atomically modified value that consists of (Note 1298015.1):

Holding SID. The top 4 bytes contain the SID of the session currently
exclusively holding or modifying the mutex.
Reference Count. The lower 4 bytes represent the number of sessions
currently holding the mutex in shared mode (or is in-flux).

GETS – number of times the mutex was requested.
SLEEPS – number of times sessions slept for the mutex.
IDN – mutex identifier. Not unique.
OP – current mutex operation.

Andrey Nikolaev RDTEX

Mutex Value in S and X Modes

The 8-byte mutex value is changed using atomic CAS instructions
(see MOS Notes 727400.1, 1310764.1, 1298015.1).
S mode:

Allows the mutex to be held by several sessions simultaneously.
0x00000000|Reference Count represents the number of sessions holding
the mutex.
oper SHRD in state object dumps.

X mode:
Is incompatible with all other modes.
Only one session can hold the mutex in exclusive mode.
Holding SID | 0x00000000
oper EXCL in object state dumps.

LONG EXCL is a variant of X mode that is used by Cursor Pin
mutexes.

Andrey Nikolaev RDTEX

Mutex Examine Mode

Examine mode indicates that the mutex is in a transient state. It is
neither X, nor S:

kgxExamine() - set Examine mode
kgxEndExamine() - clear the Examine mode
kgxIncrementExamine() - increment RefCnt and set E mode
kgxDecrementExamine() - decrement RefCnt and set E mode

Holding SID|Reference Count
In E mode, the upper bytes of the mutex value are nonzero and are
equal to the holder SID. The lower bytes are also nonzero and
represent the number of sessions simultaneously holding the mutex
in S mode.
The session can acquire the mutex in E mode or upgrade it to E
mode even if there are other sessions holding the mutex in S mode.
No other session can change the mutex at that time.

Andrey Nikolaev RDTEX

Mutex Operations Diagram

gdb $ORACLE_HOME/bin/oracle 6441
(gdb) set $op=(&’kgxOpcodeName.0’)
(gdb) x/s *($op++)
0x107a538c <_2__STRING.93.0>: "NONE"
0x10f2c348 <_2__STRING.1.0>: "GET_SHRD"
0x10e961c4 <_2__STRING.2.0>: "SHRD"
... Not all the 19 operations are used by each mutex type

NONE S1 S2 S3X

E0 E1 E2 E3LX

. . .

. . .

Andrey Nikolaev RDTEX

Mutex Types can be Found in Systemstate Dumps
id: Mutex type: Type of object it protects:
9 kxs Replay Context RAT
8 hash table parent cursor
7 Cursor Pin child cursor
6 Cursor Parent . . .
5 Cursor Stat . . .
4 Library Cache Library cache
3 HT bucket mutex (kdlwl ht) SecureFiles
2 SHT bucket mutex . . .
1 HT bucket mutex . . .
0 FSO mutex . . .

Cursor Pin mutexes act as pin counters for child cursors.
Cursor Parent and hash table mutexes protect parent cursors
during parsing and reloading.
Library cache cursor mutexes (idn=hash value) protect KGL locks.
Library cache bucket mutexes (idn≤131072) protect static hash
structures of the Library Cache.

Andrey Nikolaev RDTEX

Cursor Pin Mutex Operations

Cursor Pin mutex pins the cursor for parsing and execution:

N S1

E0 E1
CLOSE PARSE/EXEC

FETCH

EXEC

kgxSharedExamine 0000000000 SHRD -> 7d00000001 SHRD_EXAM
kgxEndExamine 7d00000001 SHRD_EXAM -> 0000000001 SHRD

kgxDecrementExamine 0000000001 SHRD -> 7d00000000 DECR_EXAM
kgxEndExamine 7d00000000 DECR_EXAM -> 0000000000 SHRD

EXclusive mutex mode protects the cursor during hard parse:

N

E0 E1

Cursor invalidation:

LX

N S1

Hard parse:

Andrey Nikolaev RDTEX

Other Mutexes

Library Cache and kxs Replay Context mutexes use X mode
only, similar to an exclusive latch:

NX

kgxExclusive

kgxRelease

Hash table and cursor parent mutexes use X and S modes:

NX S1 S2

kgxExclusive

kgxRelease

kgxShared

kgxRelease

. . .

There is no blocking of S gets by X gets.

Andrey Nikolaev RDTEX

Latch and mutex
spins and waits

Andrey Nikolaev RDTEX

Latch Waits in the Oracle Wait Interface

Oracle registers a latch wait event when the process has failed to
acquire the latch after the spinning and goes to sleep.
There is one general latch free and 47 specific latch:. . . wait events.

Wait Event Name Parameter1 Parameter2 Parameter3
latch free address number tries
latch: cache buffers chains address number tries
latch: enqueue hash chains address number tries
latch: shared pool address number tries
...
latch: virtual circuit queues address number tries

Latch waits also are instrumented in the x$ksupr (i.e., v$process)
fixed table:

ksllalaq – the address of the latch that process is acquiring.
ksllawat – latch being waited for. This is the v$process.latchwait.
ksllawhy – why code for the latch is being waited for.
ksllawere – where for the latch being waited for.

Andrey Nikolaev RDTEX

Artificially Busy Latch
To explore latches spins and waits, I wrote a testcase in which the
latch was held for a long period of time.
In the first session, the latch was artificially acquired and held for
50 s:

SQL> oradebug call kslgetl 0x6000AF48 1 100 256
SQL> host sleep 50
SQL> oradebug call kslfre 0x6000AF48

Next, DTrace traced the spin and wait of the attempt to acquire the
same latch in the second session:

SQL> host /usr/sbin/dtrace -s latch_trace.d -p &spid 0x0x6000AF48 &
SQL> oradebug call kslgetl 0x6000AF48 1 101 255

kslgetl(0x6000ACC8,1,2,3) ...

In previous versions of Oracle, the latches were spun via repeated
calls of a special routine. This is no longer the case in Oracle 12c.
Recently, Frits Hoogland demonstrated how to find the spinning
loop in Oracle 12c using gdb.

Andrey Nikolaev RDTEX

https://fritshoogland.wordpress.com/2015/07/17/oracle-12-and-latches/

DTracing the 12.1.0.2 Exclusive Latch Wait
kslgetl(0x6000ACC8,1,2,3) - 0. KSL GET exclusive Latch# 4
Atomic Operation at kslgetl:9d - 1. immediate latch get
kslges(0x6000ACC8, ...) - 2. wait get of exclusive latch
spinning ... - 3. 20000 cycles
kslwlmod(...) - 4. KSL Wait List MODification

Atomic Operation at kslges:4bb - 5. atomic get
semop(47,...) - 6. wait until posted

By default, the exclusive latch spin have 20,000 cycles.
Only the first and last reads are atomic; the other reads poll the
CPU cache.
Since Oracle 9.2, all latches of the default class 0 have used the
latch wait posting without any timeout.
The static latch classes and latch class x parameters determine
the wait and spin of an exclusive latch.
The spin count parameter is effectively static for exclusive latches:

Its dynamic change does not affect the exclusive latches.
Its nondefault value changes the latch class x values upon restart.

Andrey Nikolaev RDTEX

The Shared Latch Wait

In contrast to the exclusive latches, the spin of a shared latch can be
tuned dynamically.
The default value of the spin count parameter is 2,000.

ksl_get_shared_latch(...) - 1. shared latch get
Atomic op. at ksl_get_shared_latch:ac - 2. immediate latch get
kslgess(0x6000AEA8, ...) - 3. wait get of shared latch
spinning ... - 4. 2000 cycles
kslwlmod(...) - 5. KSL Wait List MODification

semop(16777235,...) - 6. wait until posted

Unlike the previous versions, in Oracle 12c:
The acquisition of the shared latch spins only once before the sleep.
The S mode get of the shared latch also spins.

Andrey Nikolaev RDTEX

Latch Classes
Oracle defines 8 different latch classes with different spin and wait
policies. By default, all the latches except the process allocation
latch belong to class 0.
The latch can be assigned to the class by its number. For example:

"_latch_classes"=’4:6’ "_latch_class_6"=’100 1 0 1000 2000’
sql>select * from x$ksllclass;
INDX SPIN YIELD WAITTIME SLEEP0 SLEEP1 SLEEP2 SLEEP3 SLEEP4 ...

0 20000 0 1 8000 8000 8000 8000 8000 ...
...6 100 1 0 1000 2000 4000 4000 4000 ...

... kslges(0x6000ACC8, ...) - 2. wait get of exclusive latch
spinning ... - 3. 100 cycles
yield() - Yield 1

spinning ... - 4. 100 cycles
pollsys(...,timeout=1000 ns,...) - 5. Sleep 1

spinning ... - 6. 100 cycles
yield() - Yield 1

spinning ... - 7. 100 cycles ...
pollsys(...,timeout=2 ms,...) - 8. Sleep 2 ...

Andrey Nikolaev RDTEX

The Performance of the Latch Classes

Row cache objects latch contention testcase on ODA (24 SMT)
Andrey Nikolaev RDTEX

New in 12c: Latch Wait List Priority

After an unsuccessfull spin the process links itself to the end of latch
wait list and goes to sleep.
However, if this is not the first sleep during the long wait for the
latch, then the process will get a priority.
Next kslfre() scans the list and posts the process having the priority.
latch wait list pri sleep secs parameter determines the time in

seconds to sleep on latch wait list until getting the priority.
According queuing theory, this functionality does not affect the
overall latch performance.
However, this bounds a heavy-tailed latch waits distribution.

Andrey Nikolaev RDTEX

Mutexes in the Oracle Wait Interface
Wait Event Name Parameter1 Parameter2 Parameter3
cursor: mutex X idn value where
cursor: mutex S idn value where
cursor: pin X idn value where
cursor: pin S idn value where
cursor: pin S wait on X idn value where
library cache: mutex X idn value where
library cache: mutex S idn value where
SecureFile mutex ? ? ?

Consistency matrix of the mutex modes:

Get
Held S X,LX E

S — mutex type S ?
X mutex type X mutex type X mutex type X
E — mutex type S wait on X mutex type S

We will focus on the library cache:. . . and cursor: pin. . . waits.
Andrey Nikolaev RDTEX

Parameters of the Mutex Wait Events

The parameters of the mutex waits:
P1=idn. A mutex identifier. This is the hash value of the library cache
object protected by mutex or the hash bucket number.
P2=value = Blocking SID|Shared refs. This is the mutex value at the
beginning of the wait. It contains the SID of the blocker and the number
of shared references.
P3=where = Location ID|0. The top 4 bytes contain location in code
where the session is waiting for the mutex.

Useful scripts from my blog:
mutex waits.sql – provides the details regarding the sessions currently
waiting for mutexes.
mutex ash waits.sql – provides details regarding the mutex wait history
from ASH.

Andrey Nikolaev RDTEX

A x$mutex sleep history is not a Circular Buffer
In my mutex contention testcase with two sessions, the fixed table
x$mutex sleep history contains only 3 rows:

SQL> select SLEEP_TIMESTAMP,MUTEX_ADDR,MUTEX_IDENTIFIER,MUTEX_TYPE,
GETS,SLEEPS, REQUESTING_SESSION,BLOCKING_SESSION,
LOCATION,MUTEX_VALUE from x$mutex_sleep_history;

SLEEP
TIMESTMP

MUTEX
ADDR

MUTEX
IDN

MUTEX
TYPE

GETS SLEEPS REQ BLK LOCATION VALUE

06:19:23.
465130

2CDA1E80 3222383532 Cursor
Pin

2973608 1256 136 0 kksfbc
[KKSCHLFSP2]

00

06:19:25.
145753

2CDA1E80 3222383532 Cursor
Pin

3728317 1552 136 15 kksLockDelete
[KKSCHLPIN6]

000F0001

06:19:25.
200443

2CDA1E80 3222383532 Cursor
Pin

3742424 1559 15 136 kksLockDelete
[KKSCHLPIN6]

00880002

This fixed table is an array in the SGA hashed by MUTEX ADDR
and BLOCKING SESSION.
The row corresponding to the next sleep for the same mutex and
blocking session replaces the row for the previous sleep.
This is the only place where the MUTEX ADDR is externalised.

Andrey Nikolaev RDTEX

x$mutex sleep and Mutex Locations

A mutex location id is similar to a latch where parameter.
This is a place in the Oracle code from which the mutex has been
requested.
The location name can be seen in the x$mutex sleep fixed table
summarises the sleep statistics of mutexes:

LOCATION and LOCATION ID – the name and ID of the code location
where the wait occurs.
SLEEPS –number of sleeps for this MUTEX TYPE and LOCATION.
WAIT TIME – cumulative time (in microseconds) slept at this LOCATION.

Unlike what it does for the latch, Oracle does not externalise the
complete list of the mutex sleep locations.

Andrey Nikolaev RDTEX

The Artificially Busy Mutex

To explore the mutex waits, I will need a testcase that will hold the
mutex for a long time.
AOL and mutex acquisition are too complex for the oradebug call.
The oradebug poke no longer works in Oracle 12c.
I will simulate the busy mutex by directly modifying its value from
the inside of the Solaris kernel via DTrace:

SQL>host dtrace -s mutex_waits.d -p <spid> 0x870d41f0 0x100000001 &
...

*RefCount= $2;
copyout(RefCount,$1,8);

...
SQL>oradebug peek 0x870d41f0 8
[0870D41F0, 0870D41F8) = 00000001 00000001

This looks exactly like the SID 1 is holding the mutex in E mode.
The script can simulate the busy mutex in E, S, and X modes.

Andrey Nikolaev RDTEX

DTracing the 12.1.0.2 ”Library Cache Mutex X” Wait
The testcase holds a library cache mutex corresponding to the
PL/SQL procedure demo proc in X mode for 50 s.
One second later, the session tries to execute the demo proc and
waits for the library cache: mutex X event for 49 s:

SQL> exec demo_proc()
...kgxExclusive(.,mutex=0x8941B6E0,aol=0x89065380)
spinning ... - 1. 255 cycles

yield() - 2.
spinning ... - 3. 256 cycles

yield() - 4.
spinning ... - 5. 256 cycles
semsys(...,timeout=10 ms,...) - 6.

spinning ... - 7. 256 cycles
semsys(...,timeout=10 ms,...) - 8. ...

First, the session spins and yields the CPU to other processes twice.
Then, the session repeatedly spins and sleeps for 10 ms.

Andrey Nikolaev RDTEX

The Mutex Waits Schemes Introduced in Oracle 11.2

Patch 10411618. Enhancement to add different “mutex wait
schemes”.
Allows 1 of 3 concurrency wait schemes and introduces 3 parameters
to control the mutex waits:

mutex wait scheme – which wait scheme to use.
0 – Always YIELD.
1 – Always SLEEP for mutex wait time.
2 – Exponential backoff up to mutex wait time.
mutex spin count – the number of spins. The default is 255.
mutex wait time – the sleep timeout. The default is 1.

The default scheme is 2.
It consumes much less CPU than the aggressive mutex waits in
Oracle 10g.

Andrey Nikolaev RDTEX

Exponential Backoff in the Mutex Wait Scheme 2
Surprisingly, there is no exponential backoff by default. The
session repeatedly sleeps for 1 cs.
To observe the exponential timeouts, one should increase the
mutex wait time parameter (hereafter we will omit the spins):
SQL> alter system set "_mutex_wait_time"=30;
SQL> SQL> exec demo_proc()
kgxExclusive(.,mutex=0x880CDB28,aol=0x8960DA68)

yield() call repeated 2 times
semsys() timeout=10 ms call repeated 2 times
semsys() timeout=30 ms call repeated 2 times
semsys() timeout=70 ms call repeated 2 times
semsys() timeout=150 ms
semsys() timeout=230 ms
semsys() timeout=300 ms call repeated 160 times ...

The mutex wait time parameter value is the maximum sleep time
in centiseconds.
This scheme resembles the latch acquisition algorithm in Oracle 8i.

Andrey Nikolaev RDTEX

Sleeps Mutex Wait Scheme 1

Mutex wait scheme 1 repeatedly requests 1 ms sleep:
SQL> alter system set "_mutex_wait_scheme"=1;
SQL> exec demo_proc()
kgxExclusive(...)

yield()
pollsys() timeout=1 ms call repeated 4392 times

The mutex wait time parameter is the sleep timeout in
milliseconds:
SQL> alter system set "_mutex_wait_time"=30;
SQL> exec demo_proc()
kgxExclusive(...)

yield()
pollsys() timeout=30 ms call repeated 1574 times

mutex wait time=0 results in a mutex wait scheme 0.
Andrey Nikolaev RDTEX

Classic Mutex Wait Scheme 0

Differs from the aggressive mutex waits in Oracle 10g by 1 ms sleep
after 99 yields:
SQL> exec demo_proc()
kgxExclusive(...)

yield() call repeated 99 times
pollsys() timeout=1 ms
yield() call repeated 99 times
pollsys() timeout=1 ms
yield() call repeated 99 times
pollsys() timeout=1 ms ...

This 1 ms sleep significantly reduces the mutex CPU consumption
and increases the system robustness.

Andrey Nikolaev RDTEX

Yield and Sleep Parameters of Mutex Wait Scheme 0
NAME VALUE DESCRIPTION
wait yield mode yield Wait Yield – Mode
wait yield hp mode yield Wait Yield – High Priority Mode
wait yield sleep time msecs 1 Wait Yield – Sleep Time (milliseconds)
wait yield sleep freq 100 Wait Yield – Sleep Frequency
wait yield yield freq 20 Wait Yield – Yield Frequency

With the default value wait yield mode=yield mode, the Oracle
process first yields the CPU, then sleeps:

alter system set "_mutex_wait_scheme"=0 "_wait_yield_mode"=’yield’
"_wait_yield_sleep_time_msecs"=2 "_wait_yield_sleep_freq"=3;

... kgxSharedExamine()
yield() call repeated 2 times
pollsys() timeout=2 ms
yield() call repeated 2 times
pollsys() timeout=2 ms
...

Andrey Nikolaev RDTEX

mutex wait scheme 0: Sleep Wait Mode
In the complementary wait yield mode=sleep, the Oracle process
first sleeps, then yields:
sql>alter system set "_wait_yield_mode"=’sleep’;
sql> exec demo_proc()
kgxExclusive(...)

pollsys() timeout=1 ms call repeated 19 times
yield()
pollsys() timeout=1 ms call repeated 19 times
yield()...

The yield mutex wait mode may cause CPU starvation when Oracle
processes run at different priorities. The higher priority processes
yielding the CPU are not preempted by the lower priority processes.
The high priority processes parameter lists the RT priority
processes.
The wait yield hp mode parameter allows us to specify the sleep
wait mode for the high-priority processes only.

Andrey Nikolaev RDTEX

Flexibility of Mutex Wait Scheme 0

The mutex wait scheme=0 is very flexible. For example, I can
simulate the aggressive mutex wait behaviour of Oracle 10g:
sql>alter system set
"_wait_yield_mode"=’yield’ "_wait_yield_sleep_time_msecs"=0;
sql> exec demo_proc()
kgxExclusive(...)
...

yield() call repeated 15332138 times

Alternatively, I can simulate a ”pure sleep” wait, which is used by
non-exclusive mutex gets:
SQL>alter system set
"_wait_yield_sleep_time_msecs"=1 "_wait_yield_sleep_freq"=0;
...

pollsys() timeout=1 ms call repeated 4393 times

Setting the mutex wait scheme parameter to a value greater
than 2 results in scheme 0 in Oracle 12c.

Andrey Nikolaev RDTEX

Cursor Pin Mutex Waits

Experiments demonstrated that only the eXclusive mutex gets are
affected by the mutex wait scheme parameter in Oracle 12c.

In 12c the mutex wait schemes are only applicable to library cache:
mutex X, cursor: pin X, and cursor: mutex X waits.

The examine and shared mutex waits use the ”pure sleep” wait
scheme without any yield’s:
SQL> select 1 from dual where 1=2;
kgxSharedExamine(...)

pollsys() timeout=1 ms call repeated 4449 times

The sleep duration is defined by the mutex wait time.

Cursor: pin S, cursor: pin S wait on X, and cursor: mutex S
contentions no more tunable by the mutex wait scheme parameter.

Andrey Nikolaev RDTEX

Comparison of Mutex Wait Schemes

Library cache: mutex X testcase on 12 Cores (24 SMT) X2-2 Exadata.
Andrey Nikolaev RDTEX

Comparison of Mutex Wait Schemes

Default scheme 2 is well balanced in all concurrency regions.
Scheme 1 should be used when the system is constrained by the
CPU.
Previous Oracle 10.2–11.1 mutex wait algorithm:

Had the fastest performance in medium concurrency workloads.
Throughput fell if the number of contending threads exceeded the number
of CPU cores.
CPU consumption increased rapidly beyond this point.
This excessive CPU consumption starved the CPUs and impacted the other
workloads.

Scheme 0 has a throughput similar to the Oracle 10g scheme in the
medium concurrency region.
The ”pure sleep” wait scheme results in very low CPU consumption,
but it has the longest elapsed time and the worst throughput.
All the contemporary Oracle 12c mutex schemes consume less CPU
than those of versions 10.2 and 11.1.

Andrey Nikolaev RDTEX

Latch and mutex contention

Andrey Nikolaev RDTEX

Oracle Spinlock Contention

Contention arises when the latch or mutex is requested by several
sessions simultaneously.
Contention is the consequence of over-utilisation or abnormally long
holding times for the spinlock. To distinguish between these
scenarios, one should investigate the corresponding latch and mutex
statistics.
In most cases, the root cause of latch and mutex contention is a bug
inside an application or within Oracle.
The techniques used to treat spinlock contention in Oracle 12c
include:

Flexible mutex wait schemes.
Latch classes.
Tuning of the spin count.
Cloning of hot library cache objects.

Andrey Nikolaev RDTEX

Origins of Latch and Mutex Statistics
The cumulative counters of latch statistics are externalised in
v$latch parent/v$latch children:
Statistics: When and how it increments:
GETS ++ after the wait mode latch get
MISSES ++ after the get if it was missed
SLEEPS +number of sleeps during the get
SPIN GETS ++ if the get was missed but no sleep occurred
WAIT TIME +wait time” after the latch acquisition

The mutex statistics counters are located inside the mutex structure:
SQL> oradebug setmypid
Statement processed.
SQL> oradebug peek 0x87F387B8 24
[087F387B8, 087F387C8) = 00000000 00000000 000C352E 000003B5

ˆmutex ˆGETS ˆSLEEPS

By sampling of the spinlock value, we can measure its Utilisation.
Andrey Nikolaev RDTEX

The Key Queuing Spinlock Properties

Differential (point-in-time) statistics:
Requests arrival rate: λ = ∆ gets

∆ time

Miss ratio (PASTA): ρ = ∆misses
∆gets

≈ U

Avg. holding time (Little’s law): S = U/λ

Sleeps rate: ω = ∆sleeps
∆time

Sleeps ratio: κ = ∆sleeps
∆misses

= ω/(λU)
Wait time per second: W = ∆wait time

∆time

Mutex spin inefficiency: k = κ/
(
ρ(1 + ρκ)

)
The average holding time S is the most important aspect of tuning.
For more information on the mathematics of exclusive latches and
mutexes, see my blog.
To my knowledge, there is no mathematical theory of the shared
spinlocks.

Andrey Nikolaev RDTEX

Average Latch and Mutex Holding Times

latch stats 11g.sql – measures and computes statistics for a given
latch address.
mutex stats.sql – measures and computes statistics for a given
mutex address (doesn’t work yet in 12c due to bug 19363432)
Typical no-contention values for latch and mutex holding time S in
exclusive mode on some platforms (us):

library cache
mutex

session allocation
latch

mutex
spin time

Sparc T5-8 0.3-3 2-5 0.7
IBM P795 0.3-2 2-3 0.9
Exadata X2-2 0.3-5 5-10 1.8
Sparc T2000 2.5-12 10-15 8.7

These microsecond intervals are 10,000 times less than those that
occur in the 1 centisecond duration of mutex sleep.

Andrey Nikolaev RDTEX

Time Microscope Idea

Reality: 1,000,000X Zoom:
1 us 1 s
1 ms 17 min
1 s 11.5 days
Light speed (300000 km/s) Sonic speed (300 m/s)
Mars rocket (11 km/s) Garden snail (11 mm/s)
CPU tick (2 GHz) 0.0005 s
Normal library cache mutex holding time ≈ 0.3− 5 s
Max spin time for mutex (255 spins) ≈ 1 s
Exclusive latch holding time ≈ 10− 20 s
Max spin time for exclusive latch ≈ 1 min
Min interval between mutex gets ≈ 1− 2 s
OS context switch time (10 us – 1ms) 10 s − 17 min

Andrey Nikolaev RDTEX

Mutex and Latch Waits Under the Time Microscope

Mutex wait scheme 2 algorithm:
Spin for mutex for 1 s X 3 times.

Sleep for 3 hours (1 cs) in hope that the congestion will
dissolve.

Spin again for 1 s.
Sleep again for 3 hours.

etc.
The sleep duration for this scheme is much longer than a normal
mutex correlation time.
Wait scheme 1 sleeps for 17 min (1 ms) after 1 s spin. This is still
1000 times longer than the typical mutex time.
Compare these timed mutex sleeps to the post-wait algorithm for
the latch:

Spin for exclusive latch for 1 min.
If the spin is not successful, set to sleep until post.

According to v$event histogram, the majority of latch waits take
less then 1 ms.

Andrey Nikolaev RDTEX

Latch and Mutex Contention Diagnostics

Little’s law: U = λS

Spinlock contention should be suspected if the latch or mutex wait
events are observed in the “Top 5 Timed Events” AWR section.
Contention can be a consequence of:

Abormally long holding time S > 10 us due to: high version counts, bugs,
CPU starvation, and preemption, etc.
High spinlock U tilization due to excessive requests.

Spinlock statistics helps diagnose what actually happens.
The latchprofx.sql script by Tanel Poder reveals where the latch
contention arises.

Andrey Nikolaev RDTEX

http://blog.tanelpoder.com/files/scripts/latchprofx.sql

Beware of Bugs and Certain v$/x$

Scans of some x$ tables may induce the spinlock contention:
Fixed table Fixed view Spinlock
x$ktcxb v$transaction transaction allocation latch.
x$ktadm v$lock,

dba jobs running
DML lock allocation latch.

x$ksmsp shared pool latch
x$kslltr v$latch all the parent latches
x$kqlfxpl v$sql plan library cache mutex
x$kqlob v$sql library cache mutex
x$kqllk v$open cursor library cache mutex
x$kqlpn library cache mutex

Andrey Nikolaev RDTEX

Divide and Conquer the Mutex Contention
Contention for heavily accessed objects can be divided between
multiple copies of the object in the library cache.
dbms shared pool.markhot() marks the hot library cache object
as a candidate for cloning.
The kgl hot object copies parameter controls the number of
copies:
SQL>exec dbms_shared_pool.markhot(’SYS’,’DEMO_PROC’,1);
SQL>select kglnaown,kglnaobj,kglobprop from x$kglob

where bitand(kglhdflg,33555456) != 0;
KGLNAOWN KGLNAOBJ KGLOBPROP
---------- ---------- ----------
SYS DEMO_PROC HOT
SYS DEMO_PROC HOTCOPY1
SYS DEMO_PROC HOTCOPY2 ...

“. . . The intention is that in a future release there will be no need to
mark copies hot because the RDBMS will be able to detect and
mark them itself. . . ”

Andrey Nikolaev RDTEX

Let it Spin

Latches and mutexes were designed to spin, so let them!
Longer spinlock holding times may cause the contention. Spinning
may mitigate this.
Default spin counts:

mutex spin count=255 for mutexes.
spin count=2000 for shared latches.
latch class 0=”20000” for exclusive latches.

Different values may be appropriate for some contention scenarios.

Andrey Nikolaev RDTEX

Tuning the Spin Count of Exclusive Spinlocks

When the holding time S of the exclusive spinlock is in the range of
microseconds and its utilisation is not approaching 100%, then it is
mathematically advisable to increase the spin count.
The belief that CPU time will raise infinitely with increases in spin
count is a common myth. In reality, the processes will spin up to an
average residual holding time, as follows:

k = 1
S

∞∫
∆

(t−∆)p(t) dt

Γ = 〈t2〉
2S −

1
2S

∞∫
∆

(t−∆)2p(t) dt
The spin count tuning probes the holding time distribution.
Good starting point for tuning is the multiple of default spin count
value (255 or 20K).
Beware of side effects. You should have enough free CPU.

Andrey Nikolaev RDTEX

Spin-Scaling Rule for Exclusive Spinlocks

If you have CPU resources and the spin is efficient (k ≤ 0.1) then,
doubling the spin count will square the spin inefficiency
coefficient and add kth part to the CPU consumption.

A doubling of the spin count may result in a 10-fold
decrease in spinlock wait events and a mere 10%

increase in CPU consumption.

Andrey Nikolaev RDTEX

Spin-Scaling Rule for Exclusive Spinlocks

If you have CPU resources and the spin is efficient (k ≤ 0.1) then,
doubling the spin count will square the spin inefficiency
coefficient and add kth part to the CPU consumption.

A doubling of the spin count may result in a 10-fold
decrease in spinlock wait events and a mere 10%

increase in CPU consumption.

Andrey Nikolaev RDTEX

Spin Count Tuning for the Shared Latches

Currently, there is no solid mathematical ground for the spin count
tuning of the shared latches.
Empirically, the larger values of the spin count demonstrate the
same spin-scaling exponential behaviour.
However, for some proportions of the S and X gets I observed that
the decrease of the spin count increases the throughput.
Presumably, this is because the X mode request serialise the shared
latch.
Hopefully, the spin count adjustment for the shared latch contention
may be performed dynamically.

Andrey Nikolaev RDTEX

Platform Sleep Granularity

Oracle 12c requests the 1 ms sleeps for cursor: pin S wait event.
However, their duration is rounded up to 1 cs on most platforms.
This results in longer mutex waits and increases the contention:

Contemporary versions of OEL and Solaris 11.1 support the
milliseconds sleep granularity out of the box.
High resolution sleeps could be enabled on some platforms:

On Solaris 10 using static tunable hires tick.
On HP-UX 11i V3 via dynamic tunable hires timeout enable.

Andrey Nikolaev RDTEX

Windows is Another World

Windows default time granularity is 1/64 s=15.625 ms.
However, it is adjusted to 1 ms by some programs using the
timeBeginPeriod() API.
A YouTube video running on the Windows server may resolve the
Cursor: pin S contention in 12c and boost the performance:

Oracle GI Cluster Health Monitor (CHM/OS) osysmond.exe has a
side effect of setting the millisecond time resolution clusterwide.

Andrey Nikolaev RDTEX

Q/A?

Questions?
Comments?

Andrey Nikolaev RDTEX

Acknowledgments

Thanks to the RDTEX Technical Support Centre Director,
S.P. Misiura, for years of encouragement and support of my research.
Thanks to my brother Aleksey for experiments with Windows.
Thanks to my colleagues for all of their help.
Thanks to all our customers who have participated in
troubleshooting.
Thanks to the Oracle development team for the creation of
advanced technologies, such as Oracle latches and mutexes.

Andrey Nikolaev RDTEX

